JEM - 2009

[O. Booklet Number]

Candidate's Full Name		
Enrolment No. :	Index No.:	

(Do not open this MCQ BOOKLET until you are asked to do so)

Subject: PHYSICS AND CHEMISTRY

Maximum Marks: 80 (Each question carries one mark)

IMPORTANT INSTRUCTIONS

Candidates should read the following instructions carefully and fill in all the required particulars on this Question Booklet and on OMR Answer Sheet before answering the questions:

- (1) The Question Booklet with 16 pages has been sealed. Candidates should open the Question Booklet only when they are asked to do so by the Invigilator.
- (2) The candidates must check that the Question Booklet has 80 questions with multiple choice answers after opening the seal and must report immediately in case of any defect.
- (3) Answers will have to be given on the OMR Answer Sheet supplied for this purpose. Question numbers progress from 1 to 80 with options shown as A, B, C and D.
- (4) OMR Answer Sheets will be processed by electronic means. Hence, invalidation of Answer Sheet resulting due to folding or putting stray marks on it or any damage to the Answer Sheet as well as incomplete/incorrect filling of the Answer Sheet, will be the sole responsibility of the Candidate.
- (5) Use Black Ball Pen to mark your answers.
- (6) While answering, choose only the Correct/Best option from the four choices given in the question and mark the same in the corresponding circle in the Answer Sheet only. Answers without any response shall be awarded zero mark. Wrong response or more than one response shall be treated as incorrect answer. For every incorrect answer one-third (1/3) mark of that Question will be deducted.
- (7) Darken with Black Ball Pen completely only one option which you think correct as shown in the figure below:

CORRECT METHOD

WRONG METHOD

- $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
- (8) Mark the answers only in the space provided. Please do not make any stray marks on the OMR Answer Sheet.
- (9) Rough work may be done on the blank space in the Question Booklet.
- (10) Please hand over the OMR Answer Sheet to the Invigilator before leaving the Examination Hall.

YOU CAN TAKE BACK THIS QUESTION BOOKLET AFTER COMPLETION OF EXAMINATION

SPACE FOR ROUGH WORK

the first of the same of the s

The state of the second second being a first break, as we can see the

and the second s the product and the purple plants of the second statistical production in the second state of the second s

والمراجع والم والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراج

the communication of the commu

the state of the s

and the second s

The state of the s

MULTIPLE CHOICE QUESTIONS **PHYSICS**

(English Version)

- \vec{A} and \vec{B} are two vectors given by $\vec{A} = 2\hat{i} + 3\hat{j}$ and $\vec{B} = \hat{i} + \hat{j}$. The magnitude of the component of \vec{A} along \vec{B} is
- B. $\frac{3}{\sqrt{2}}$ C. $\frac{7}{\sqrt{2}}$ D. $\frac{1}{\sqrt{2}}$
- Given $\overrightarrow{C} = \overrightarrow{A} \times \overrightarrow{B}$ and $\overrightarrow{D} = \overrightarrow{B} \times \overrightarrow{A}$. What is the angle between \overrightarrow{C} and \overrightarrow{D} ?

- B. 60° C. The acceleration 'a' (in ms⁻²) of a body, starting from rest varies with time t (in s) following the equation

The velocity of the body at time t = 2s will be

- A. 10 ms⁻¹
- B. 18 ms⁻¹
- C. 14 ms⁻¹ D. 26 ms⁻¹
- Figure below shows the distance-time graph of the motion of a car. It follows from the graph that the car is -

in uniform motion B.

C. in non-uniform acceleration

- D. uniformly accelerated
- 5. Two particles have masses m & 4m and their kinetic energies are in the ratio 2:1. What is the ratio of their linear momenta?

- The force F acting on a particle moving in a straight line is shown below. What is the work done by the force on the particle in the 1st meter of the trajectory?

- 10 J B.
- 15 J
- D. 2.5 J
- 7. If the kinetic energy of a body changes by 20% then its momentum would change by —
- 20%

- 44%
- A bullet is fired with a velocity u making an angle of 60° with the horizontal plane. The horizontal component of the velocity of the bullet when it reaches the maximum height is C. $\frac{\sqrt{3}u}{2}$ D. $\frac{u}{2}$
 - A. u

B.

9. A particle is projected at 60° to the horizontal with a kinetic energy K. The kinetic energy at the highest point is

10. The Poisson's ratio of a material is 0.5. If a force is applied to a wire of this material, there is a decrease in the

B.

zero

cross-sectional area by 4%. The percentage increase in the length is:

A. K

C. $\frac{K}{4}$

	A. 1%	B. 2%	C.	2.5%	D. 4%	
11.	Two spheres of equal mass terminal velocities is:	es but radii r ₁ and r ₂	are allowed t	o fall in a liquid of in	nfinite columr	a. The ratio of their
	A. 1	B. $r_1:r_2$	C.	$r_2:r_1$	D. $\sqrt{r_1}: \sqrt{r_2}$	\sqrt{r}_2
12.	Two massless springs of forc	e constants K ₁ and K ₂	are joined end	to end. The resultant for	orce constant K	of the system is
	A. $K = \frac{K_1 + K_2}{K_1 K_2}$	B. $K = \frac{K_1 - K_2}{K_1 K_2}$	C.	$K = \frac{K_1 K_2}{K_1 + K_2}$	D. $K = \frac{K}{K}$	$\frac{K_1K_2}{1-K_2}$
13.	A spring of force constant l	c is cut into two equal	halves. The	force constant of each	half is	
	A. $\frac{k}{\sqrt{2}}$	B. k	C.	$\frac{\mathbf{k}}{2}$	D. 2k	
14.	Two rods of equal length a	nd diameter have ther	mal conduct	ivities 3 and 4 units r	espectively. I	f they are joined in
	series, the thermal conducti	•				
	A. 3.43	B. 3.5	= C.		D. 3.34	
15.	19 g of water at 30°C and					
	the mixture? Given specific				of ice $= 80$ ca	dg ⁻¹ .
	A. 0°C	B5°C	C.	5°C	D. 10° C	
14	It is difficult to cook rice in	on onen wassal by he	erina da la fictori		s	
16.	It is difficult to cook rice in A. low boiling point and C. low boiling point and	high pressure	B. D.	h altitudes because of high boiling point ar high boiling point ar	nd low pressur	
17.	A. low boiling point andC. low boiling point andThe height of a waterfall	high pressure low pressure	В. D.	high boiling point ar	nd low pressur nd high pressu	re
	A. low boiling point andC. low boiling point andThe height of a waterfall softom of the waterfall is:	high pressure low pressure is 50 m. If g = 9.8	В. D.	high boiling point ar high boiling point ar ference between the	nd low pressur nd high pressu	at the top and the
	A. low boiling point andC. low boiling point andThe height of a waterfall softom of the waterfall is:	high pressure low pressure is 50 m. If g = 9.8 B. 2.17°C object and a diverg	B. D. ms ⁻² the dif	high boiling point ar high boiling point ar ference between the 0.117°C	nd low pressured high pressured temperature D. 1.43 °C	at the top and the
17.	A. low boiling point and C. low boiling point and The height of a waterfall bottom of the waterfall is: A. 1.17 °C The distance between an	high pressure low pressure is 50 m. If g = 9.8 B. 2.17°C object and a divergethe lens is	B. D. ms ⁻² the diff C. gent lens is	high boiling point ar high boiling point ar ference between the 0.117°C	nd low pressured high pressured temperature D. 1.43 °C length of the	at the top and the
17. 18.	A. low boiling point and C. low boiling point and The height of a waterfall bottom of the waterfall is: A. 1.17 °C The distance between an magnification produced by A. m	high pressure low pressure is 50 m. If $g = 9.8$ B. $2.17^{\circ}C$ object and a diverge the lens is B. $\frac{1}{m}$	B. D. ms ⁻² the diff C. gent lens is C.	high boiling point ar high boiling point ar ference between the 0.117°C m times the focal m+1	and low pressure temperature D. 1.43 $^{\circ}$ C length of the D. $\frac{1}{m+1}$	at the top and the
17. 18.	A. low boiling point and C. low boiling point and The height of a waterfall bottom of the waterfall is: A. 1.17 °C The distance between an magnification produced by	high pressure low pressure is 50 m. If $g = 9.8$ B. $2.17^{\circ}C$ object and a diverge the lens is B. $\frac{1}{m}$	B. D. ms ⁻² the diff C. gent lens is C.	high boiling point ar high boiling point ar ference between the 0.117°C m times the focal m+1	and low pressure temperature D. 1.43 $^{\circ}$ C length of the D. $\frac{1}{m+1}$	at the top and the
17. 18.	A. low boiling point and C. low boiling point and The height of a waterfall is bottom of the waterfall is: A. 1.17 °C The distance between an magnification produced by A. m A 2.0 cm tall object is place of the image? A. 4 cm, real	high pressure low pressure is 50 m. If $g = 9.8$ B. $2.17^{\circ}C$ object and a diverge the lens is B. $\frac{1}{m}$ ed 15 cm in front of a B. 4 cm, virtual	B. D. ms ⁻² the diff C. gent lens is C. concave mir	high boiling point ar high boiling point ar high boiling point ar ference between the 0.117°C m times the focal m+1 ror of focal length 10 1.0 cm, real	and low pressure temperature D. 1.43° Collength of the D. $\frac{1}{m+1}$ Com. What is	at the top and the elens. The linear the size and nature
17. 18.	A. low boiling point and C. low boiling point and The height of a waterfall bottom of the waterfall is: A. 1.17 °C The distance between an magnification produced by A. m A 2.0 cm tall object is place of the image?	high pressure low pressure is 50 m. If $g = 9.8$ B. $2.17^{\circ}C$ object and a diverge the lens is B. $\frac{1}{m}$ ed 15 cm in front of a b. 4 cm, virtual blue light of wavel :	B. D. ms ⁻² the diff C. gent lens is C. concave mir C. ength 4200 A	high boiling point ar high boiling point ar high boiling point ar ference between the 0.117°C m times the focal m+1 ror of focal length 10 1.0 cm, real of high air travels in warms.	and low pressure temperature D. 1.43° Collength of the D. $\frac{1}{m+1}$ Com. What is	at the top and the elens. The linear the size and nature
17. 18.	A. low boiling point and C. low boiling point and The height of a waterfall is bottom of the waterfall is: A. 1.17 °C The distance between an magnification produced by A. m A 2.0 cm tall object is place of the image? A. 4 cm, real A beam of monochromatic	high pressure low pressure is 50 m. If $g = 9.8$ B. $2.17^{\circ}C$ object and a diverge the lens is B. $\frac{1}{m}$ ed 15 cm in front of a B. 4 cm, virtual is blue light of wavel	B. D. ms ⁻² the diff C. gent lens is C. concave mir C. ength 4200 A	high boiling point are high boiling point are high boiling point are ference between the 0.117°C me times the focal m+1 more of focal length 10 1.0 cm, real of high air travels in wards	and low pressure temperature D. 1.43° Collength of the D. $\frac{1}{m+1}$ Com. What is	at the top and the elens. The linear the size and nature tive index 4/3. Its
17. 18.	A. low boiling point and C. low boiling point and The height of a waterfall is bottom of the waterfall is: A. 1.17 °C The distance between an magnification produced by A. m A 2.0 cm tall object is place of the image? A. 4 cm, real A beam of monochromatic wavelength in water will be	high pressure low pressure is 50 m. If $g = 9.8$ B. $2.17^{\circ}C$ object and a diverge the lens is B. $\frac{1}{m}$ ed 15 cm in front of a b. 4 cm, virtual blue light of wavel :	B. D. ms ⁻² the diff C. gent lens is C. concave mir C. ength 4200 A	high boiling point ar high boiling point ar high boiling point ar ference between the 0.117°C m times the focal m+1 ror of focal length 10 1.0 cm, real of high air travels in warms.	and low pressure temperature D. 1.43° C length of the D. $\frac{1}{m+1}$ C cm. What is D. None atter of refrace	at the top and the elens. The linear the size and nature tive index 4/3. Its

21.	Two identical light waves	s, propagating in the same of wave will be proportional to				
	A. $\cos \delta$	B. $\cos(\delta/2)$	C.	$\cos^2(\delta/2)$	D.	$\cos^2\delta$
22.	A. JK ⁻¹ per molecule	n moles of an ideal gas is PN B. JK ⁻¹ mol ⁻¹	C.	J Kg ⁻¹ K ⁻¹	D.	J K ⁻ ' g ⁻ '
23.	At a certain place, the ho	orizontal component of ear	th's magr	netic field is $\sqrt{3}$ ti	mes the	e vertical component. The
	angle of dip at that place in A. 30°					
24.	The number of electrons i	in 2 coulomb of charge is				
	A. 5×10^{29}	B. 12.5×10^{18}	C.	1.6×10 ¹⁹	D	9×10 ¹¹
25.	The current flowing thro	ough a wire depends on tir	ne as I=	$3t^2 + 2t + 5$ The o	harge f	flowing through the cross-
		e from $t = 0$ to $t = 2$ sec. is		18 C	D	5 C
	A. 22 C	B. 20 C				
26.			iomb, the	e energy stored in	it ilicica	ases by 21%. The original
	charge on the capacitor is A. 10 C	B. 20 C	_	30 C		40 C
27	The work done in carrying	ng a charge Q once around a	circle of	radius r about a ch	arge q a	at the centre is
	A. $\frac{qQ}{}$	B. $\frac{qQ}{4\pi G} \frac{1}{\pi r}$	C.	$\frac{qQ}{4\pi \in o} \left(\frac{1}{2\pi r} \right)$	D.	0
28	Four capacitors of equal	capacitance have an equiva	lent capa	citance C ₁ when co	nnected	in series and an equivalent
	capacitance C ₂ when co	onnected in parallel. The ration B. 1/16	io $\frac{C_1}{C_2}$ is:	السكار وراج السا		
	(A)					
29:	A. r/l oersted		C.	1/2\pi r oersted	Tent l e D.	.m.u. is 2πr/I oersted
30.	Which of the following	materials is the best conduc	tor of ele	ctricity?	D	Copper
	A Platinum	B. Gold	C.	Silicon	D.	***
31.	One Kg of copper is dr wires will be in the ratio		iameter a	nd a wire of 2 mm	diamete	er. The resistance of the two
	Δ 2·1	B. 1:2	C.		D.	
32	An electrical cable hav	ing a resistance of 0.2Ω de	livers 10	kw at 200V D.C. to	a facto	ory. What is the efficiency of
J ==	transmission?	В. 75%	C.	85%	D.	95%
	A wire of registance \$1		ew lengtl	n is 3 times its orig	inal len	gth. What is the resistance of
33	the new wire?	SE AD LABOUR AND ADDRESS OF THE PARTY OF THE				
	Α. 45Ω	Β. 15Ω	C.	$\frac{5}{3}\Omega$	D.	. 5Ω

	324170
34.	Two identical cells each of emf E and internal resistance r are connected in parallel with an external resistance R.
	To get maximum power developed across R, the value of R is
	A. $R = \frac{r}{2}$ B. $R = r$ C. $R = \frac{r}{3}$ D. $R = 2r$
35.	To write the decimal number 37 in binary, how many binary digits are required?
	A. 5 B. 6 C. 7 D 4

36. A junction diode has a resistance of 25 Ω when forward biased and 2500 Ω when reverse biased. The current in the diode, for the arrangement shown will be:

5v 10Ω ov

			5v		
A.	$\frac{1}{15}A$	$\mathbf{B}. \frac{1}{7}\mathbf{A}$	C.	$\frac{1}{25}$ A	$D = \frac{1}{480} A$

37. If the electron in a hydrogen atom jumps from an orbit with level $n_1 = 2$ to an orbit with level $n_2 = 1$ the emitted radiation has a wavelength given by

A.
$$\lambda = 5/3R$$
 B. $\lambda = 4/3R$ C. $\lambda = R/4$ D. $\lambda = 3R/4$ What is the particle x in the following nuclear reaction :

$$^{9}_{4}$$
Be+ $^{4}_{2}$ He $\rightarrow ^{12}_{6}$ C+ x
A. electron

B. proton

C. Photon

D. Neutron

39. An alternating current of rms value 10 A is passed through a 12Ω resistor. The maximum potential difference

across the resistor is :

A. 20 V B. 90 V C. 169.68 V D. none

40. Which of the following relations represent Biot-Savart's law?

th of the following relations represent Biot-Savart's law? $d\overline{B} = \frac{\mu_0}{4\pi} \frac{d\overline{l} \times \overline{r}}{r} \qquad B \qquad d\overline{B} = \frac{\mu_0}{4\pi} \frac{d\overline{l} \times \hat{r}}{r^3} \qquad C \qquad d\overline{B} = \frac{\mu_0}{4\pi} \frac{d\overline{l} \times \overline{r}}{r^3} \qquad D \qquad d\overline{B} = \frac{\mu_0}{4\pi} \frac{d\overline{l} \times \overline{r}}{r^4}$

a hardward with the same

PHYSICS

(Bengali Version)

 $\stackrel{-}{A}$ এবং $\stackrel{-}{B}$ দুটি ভেক্টর রাশি যাদের লেখা যায় ঃ $\stackrel{-}{A}=2\hat{i}+3\hat{j}$ এবং $\stackrel{-}{B}=\hat{i}+\hat{j}$; তাহলে $\stackrel{-}{B}$ বরাবর $\stackrel{-}{A}$ -এর উপাংশের মান হবে ঃ

A. $\frac{5}{\sqrt{2}}$ B. $\frac{3}{\sqrt{2}}$ C. $\frac{7}{\sqrt{2}}$ D. $\frac{1}{\sqrt{2}}$

2. দেওয়া আছে, $\overline{C} = \overline{A} \times \overline{B}$ এবং $\overline{D} = \overline{B} \times \overline{A}$; \overline{C} ও \overline{D} এর মধ্যবর্তী কোণ কত ?

A. 30° B. 60° C. 90° D. 180°

3. স্থির অবস্থা থেকে যাত্রা শুরু করে কোন বস্তুর ত্বরণ a (ms⁻² এককে) সময় t (s এককে)-এর সাথে নিম্নের সমীকরণ অনুসরণ করে পরিবর্তিত হয় a = 3t + 4 বস্কটিব বেগ t = 2s সময়ে হবে ঃ

বস্তুটির বেগ t = 2s সময়ে হবে ঃ
A. 10 ms⁻¹
B. 18 ms⁻¹
C. 14 ms⁻¹
D. 26 ms⁻¹

4. নিম্নে একটি গাড়ির চলমান অবস্থার অবস্থান-সময় লেখচিগ্র দেওয়া আছে। গ্রাফ থেকে বোঝা যাচেছ যে গাড়িটিঃ

- A. স্থির অবস্থায় আছে

5. m এবং 4m ভর বিশিষ্ট দুটি বস্তুকণার গতিশক্তির অনুপাত 2: 1 হলে তাদের রৈখিক ভরবেগের অনুপাত কও হবে? A. $\frac{1}{\sqrt{2}}$ B. $\frac{1}{2}$ C. $\frac{1}{4}$ D. $\frac{1}{16}$

A.
$$\frac{1}{\sqrt{2}}$$

$$B_{*} = \frac{1}{2}$$

$$C = \frac{1}{4}$$

$$D_{-}\frac{1}{16}$$

6 সরল রৈখিক পথে পরিভ্রমণরত একটি কণার উপর প্রযুক্ত বল (F) নিম্নলিখিত লেখচিত্রে দেখানো হয়েছে। যাত্রাপথের প্রথম মিটারে কণার উপর প্রযুক্ত বলটি কতটা কাজ করেছে?

A. 5 J B. 10 J C. 15·J D. 2.5 J 7 একটি বস্তুর গতিশক্তির পরিবর্তন 20% হলে, তার ভরবেগের পরিবর্তন হবেঃ

A. 20% B. 24% C. 40% D. 44% – ৪. একটি বুলেট অনুভূমিক তলের সহিত 60º কোণে u বেগে উৎক্ষিপ্ত হল। বুলেটটির গতিপথের সর্বোচ্চ উচ্চতায় বেগের অনুভূমিক উপাংশ হল ঃ

9 K গতিশক্তি সম্পন্ন একটি কণা অনুভূমিকের সাথে 60° কোণে নিক্ষেপ করা হয়েছে। গতিপথে সর্বোচ্চ বিন্দুতে এর গতিশক্তি হবেঃ

A. K B. $\sqrt[M]{\text{el}}$ C. $\frac{K}{4}$ D. $\frac{K}{2}$ 10 একটি পদার্থের পোয়াসঁ অনুপাত মান 0.5। ঐ পদার্থনির্মিত একটি তারে বল প্রয়োগ করলে তার প্রস্থুচ্ছেদের মান 4% হ্রাস পায়। ঐ ক্ষেত্রে ভারটির দৈর্ঘ্য বৃদ্ধির শতকরা পরিমাণ হবে ঃ

A. 1%

- C. 2.5%

11. দুটি একই ভরের গোলকের ব্যাসার্ধ যথাক্রমে r; এবং r2। গোলক দুটিকে একটি অসীম দৈর্ঘ্যের তরলস্তত্তে ফেলা হল। তাহলে গোলকদুটির প্রান্তিক গতিবেগের অনুপাত হবেঃ B. $r_1 : r_2$ D. $\sqrt{r_1} : \sqrt{r_2}$

12. দুটি ভরহীন স্প্রিং, যাদের বল ধ্রুবক যথাক্রমে K_1 ও K_2 , ব্রেণি সমবায়ে মৃত । লব্ধ বল ধ্রুবক K' হবে $K = \frac{K_1 + K_2}{K_1 K_2} \qquad \qquad B, \quad K = \frac{K_1 - K_2}{K_1 K_2} \qquad \qquad C, \quad K = \frac{K_1 K_2}{K_1 + K_2} \qquad \qquad D, \quad K = \frac{K_1 K_2}{K_1 - K_2}$

k বল প্রবাবের একটি ভিতেকে কেটে সমান দুখারে বিভক্ত করা হলো। প্রতি খণ্ডের বল প্রবক হবে ।

14,	ু এক মান	ই দৈর্ঘ্য এবং ব্যাসের দৃটি রডে হবেঃ	র তাপ	পরিবাহিতা মান ষথাক্রমে 3 এ	াবং 4 এ	একক, রড দুটিকে শ্রেণী সমব	গয়ে যু	স্ত করলে সমবায়টির তাপ পরিবাহিত
	A.	3.43	B.	3.5	C.	3.4	D.	3.34
15.	30	⁰ C উষ্ণতায় 19 g জল এবং	20°	C উষ্ণতায় 5g বরফকে একা	ট ক্যাবে	নারিমিটারে মিশ্রিত করা হয়ে	ল মিঙ	াণের চূড়াস্ত উষ্ণতা কত হবে? দেওয়া
	আ	ছ, বরফের আপেক্ষিক তাপ =	0.5 ca	ıl g ⁻¹ (⁰ C) ⁻¹ এবং বরফ গল	নের লী	ন তাপ = 80 cal g ⁻¹		2.10001010000
	A.	0°C		-5°C		5°C	D	10° C
16.	অধি	ক উচ্চতায় উন্মুক্ত পাত্ৰে সিদ্ধ	করিয়া র	ামা কষ্টকর কারণ				
	A.	কম স্ফুটনান্ধ এবং উচ্চচাপ	B.	বেশী স্ফুটনাঙ্ক এবং নিম্নচাপ	C.	কম স্ফুটনান্ধ এবং নিম্নচাণ	ı D.	বেশী স্ফুটনাঙ্ক এবং উচ্চচাপ
17.	এক			9.8 ms ⁻² হলে এই জলপ্রপা				
	A.	1.17 °C	B.	2.17°C	C.	0.117°C	D.	1 43 °C
18.	একা	ট বস্তু এবং একটি অপসারী লে	ন্পের ম	খ্যর দূরত্বের মান হ'ল লে স টির	ফোকা	স দূরত্বের m গুণ। লেন্সটির	দ্বারা স	দৃষ্ট রৈখিক বিবর্ধনের মান হবেঃ
	A.	m	B:	1		m+1	Ď.	1
19.	অবত	চল দর্পণের 15cm. সম্মুখে 2	.0cm	m দীর্ঘ একটি বস্তাকে বাখা হল । :				m+1 বর দৈর্ঘ্য ও প্রকৃতি কীরূপ হবে?
	A.	4 cm, সদবিশ্ব	B.	4 cm, অসদবিম্ব	(-1-110;	1.0 oz. www.	ত ব্র	
								কোনটিই নয়
20	একব হবে :							নরাস্ক 4/3 হলে, জলে এর তরঙ্গদৈর্ঘ্য
	A.	4200 Å	B.	5800 A	C.	4150 Å	D.	3150 Å
21.	দুটি এ নিম্নলি	াকই ধর্মের আলোক তরঙ্গের ম বিখিত রাশির সমানুপাতিক ঃ					হল (Superpose)। লব্ধ তরঙ্গের তীব্রতা
	A.	cos δ	B.	$\cos(\delta/2)$	C.	$\cos^2{(\delta/2)}$	D.	$\cos^2\!\delta$
22	n অণু	বুর জন্য একটি আদর্শ গ্যাসের গ	যবস <u>্থার</u> '	সমীকরণ হল PV = nRT,	যেখানে	R ধ্রুবক। R এর SI একক	0	
	A.	JK ⁻¹ per molecule	B.	JK ⁻¹ mol ⁻¹	C.	J Kg ⁻¹ K ⁻¹	D.	J K ⁻¹ g ⁻¹
23.	একটি	নিৰ্দিষ্ট জায়গায়, ভূচৌশ্বক প্ৰাব	ল্যের ত	ানুভূমিক উপাংশ উল্ল ন্থ উপাংশে	ণর √3	গুণ। ঐ জায়গায় বিনতি বে	গণ	
	A.	30°	B.	60°	C.		D.	90°
24.	2 কুল	ম্ব আধানে ইলেকট্রন সংখ্যা						
	A.	5×10 ²⁹	B.	12.5×10 ¹⁸		1.6×10 ¹⁹	D.	9×10 ¹¹
25,	একটি ভেতর	তারের মধ্য দিয়ে প্রবাহিত তর্তি দিয়ে যে আধান প্রবাহিত হবে	টুৎ সম তা হল	য়র সহিত I=3t ² +2t+5 ঃ	সমীকর	বণ অনুসরণ করে। t = 0 থে	কৈ t	= 2 sec সময়ে তারের প্রস্থচ্ছেদের
	A.	22 C		20 C	C.	18 C	D	5 C
26.	যদি বে	গন ধারকের আধান 2 coulor	mb বদ্বি	রু করা হয় তবে এতে সঞ্চিত শ				
	A.	10 C			C.	0.0.0	D.	
27.	q আধ	ানকে কেন্দ্র করে O আধানকে		r-ব্যাসার্ধের কৃত্তাকার পথে ঘুরি			D.	70 C
	A.	$\frac{q Q}{4\pi \in_0 r}$	В.	a O I	C	αO (1)	D.	0

26	সমাত্র	গারকজের চারটি ধ	ারকের তলা	ধাবক্ত	চ (যখন এ	দেৱ শ্ৰেণীতে	যক্ত কর	া হয়। তাদের সমান্তর	ালে যুক্ত	কর লে তুল্য ধা	রকত্বের মান হয়	I C2 !
		0	TWG AN DAD	4124 4					•			2
	অনুপা	ত $\frac{C_1}{C_2}$ হবেঃ			H	14-11-2						
	A.				1/16				D.			
29.	একটি	বৃত্তাকার লুপ এর ব	ঢ়া সার্ধ 'r' এব	ং প্ৰবা	হিত তড়িৎ I e.	m.u. বৃত্তাকা	র লুপ এ	র কেন্দ্রে চৌশ্বকক্ষ্ম্রে	প্রাবল্য H	এর মান হবে ঃ		
	A.	r/I oersted						I/2πr oersted	D.		rsted	
30	নিম্নলি	বিতগুলির মধ্যে <i>বে</i>	কানটি তড়িং	তর শ্রে	ষ্ঠ পরিবাহী ঃ							
1,97		প্র্যাটিনাম		В. С			C. সি	লিকন	D	, তামা		
31	এক বে	চজি কপারকে 1m	m ব্যাস বিশি	ষ্ট্র এবং	: 2mm ব্যাস বি	র্বশিষ্ট তারে প	রিণত ক	রা হ'ল। দুটি তারের ৫	রাধের অনু	পাত হবে		
i i i	A.			B.				16:1	D	4:1		
32	একটি	বৈদ্যুতিক কেবল ().2Ω রোধণি	वेশিষ্ট।	কেবলটির সাহা	য্যে কোন ফ্যাই	ষ্ট্ররীতে 2	200V D.C. তে 10	kw সরবর	াহ করা হয়। স	স্প্রচারের ক্ষমত	কত?
		65%			75%			85%		. 95%		
33≓	5Ω	রোধযুক্ত একটি তা	র থেকে তিন	াগুণ দৈ	র্ঘের একটি তার	্য টানা হলো।	নতুন তা	রটির রোধ কত হবে?	·			
	A.	45 Ω		B.	15Ω		C .	$\frac{5}{3}\Omega$	D	. 5Ω		
34	দুটি বে	হাষ যাদের প্রতিট <u>ি</u> র	া তড়িৎচালব	e 'E' ه	াবং অভ্যন্তরীণ	রোধ '፲' সমা	ন্তুরাল স	মবায়ে যুক্ত আছে। এ	র স ঙ্গে বহি	বৈৰ্তনীতে R বে	বাধ যোগ করা ব	আছে। R
	এর দু	ই প্রান্তের মধ্যে স ে	ৰ্বাচ্চ ক্ষমতা ৭	পাওয়া '	যাবে যখন 'R'	এর মান হবে						
		/ 2						$R = \frac{r}{3}$		R = 2r		
35.	দশমি	ক পদ্ধতির সংখ্যা 3				রতে কতগুলি		জিট ব্যবহার করতে হা _	বে?			
	A.	_		B.			C.	•	D			
36.		জাংশান ডায়োডরে বিত ব্যবস্থায় ডায়ে					, এবং ার	ভার্স বায়াস করলে তা	র রোব হঃ	2500 12		
						5v	- N	OOVOV				
	A	$\frac{1}{15}$ A		В	$\frac{1}{7}A$		C.	$\frac{1}{25}$ A	D	$\frac{1}{480}$ A		
37.	যদি হ	াইড্রোজেন পরমাণু	তে ইলেকট্র	۲ n, =	= 2 কক্ষ থেকে	n ₂ =1 ক্ৰ	ক্তলে য	ায়, তবে নিঃসৃত বিকি	রণ এর তর	ক্ষ দৈৰ্ঘ্য হবে ঃ		
	A.							$\lambda = R/4$				
38.	নিশ্ববি	নখিত নিউক্লিয়ার বি										
		411- 120	J.,			- 14						
	7	² চ ইলেকট্রন		B.	প্রোটন		C.	ফোটন). নিউট্রন		
20	12 (. মান 10 A; রোধের				বেঃ
39.	A.		ाटल <i>प्राप्ता</i> ण ४		90 V	WILL 4-19 40	C.	169.68 V). কোনটিই	নয়	
40		র কোন সম্পর্কটি '	নাসো অফেট									
40.						ālxî		_ μ _ο d̄ι×	Ŧ -	μ	$\overline{d}l \times \overline{r}$	
	Ag	$dB = \frac{r_0}{4} = \frac{\alpha}{4}$		B	$dB = \frac{0}{4\pi}$	1	\mathbf{C}_{\pm}	$d\overline{B} = \frac{\mu_0}{4\pi} \frac{dl \times dl}{dl}$	_ [$dB = -\frac{1}{A}$	π 4	

MULTIPLE CHOICE QUESTIONS

CHEMISTRY

(English Version)

			,	Dugitsii	v CI 3i	OL)				
41	. 1 mole of photon,	each of freque	ency 2500 S-1	would ha	ve an	nrovimatalı	z a total er	apon	of	
	A. l erg	B.	l Joule	Would like	C.	1 eV	y a total el		l MeV	
42	. If n, number of rad	ioatoms are pi	esent at time	t, the follo	owing	expression	will be a	cons	stant :	
	A. n_i/t	B.	ln n _t /t		C.	d ln n _i /dt			t.n _t	
43	The following grap	h shows how	T ₁₂ (half-life) of a reac	tant F	changes u	ith the ini	tiol r	vanctant company	
	/								eactain concemin	ation a ₀ ,
	1/a ₀									
	The order of the rea	action will had								
	A. 0	B.	840		C	2		2	-	
44	The second law of	thermodynami	fre save that is	n a avalia	C.	2		D.	3 _]][0]	
	A. work cannot b	oe converted in	os says uiai ii ito heat	n a cyclic	proce B.		4 1. 4 1.	=		
	C. work cannot b			o heat					into work y converted into	work
45.	The equilibrium con	nstant (K) of a	reaction may	be writte	n as		11		15.0	
	A. $K = e^{-\Delta G/RT}$	В.	$K = e^{-\Delta G^0/RT}$		C.	$K = e^{-\Delta H/2}$	RT	D.	$K = e^{-\Delta H^0/RT}$	
46	For the reaction SO	$_2 + \frac{1}{2}O_2 = SO$	3, if we write	$K_p = K_c (I$	RT)*,	then x beco	mes :			
	A1	В	$-\frac{1}{2}$		C,	$\frac{1}{2}$		D.		
47.		²³⁵ U decays o	only by emitti	ng α-and	β−ра	rticles, the	oossible pi	oduc	ct of the decay is	3
	A. 225 89 Ac	B.	²²⁷ Ac		C.	²³⁰ Ac		D.	²³¹ Ac	
48.	The time taken for 1 take:	0% completio	n of a first or	der reactio	on is 2	20 mins. Th	en, for 19	% co	mpletion, the rea	action will
	A. 40 mins.	В.	60 mins	· ·	C	30 mins.		D,	50 mins	
49	Which of the followi A addition of 5 m C addition of 50 r	I OF IM HCI		E	3	of 0.01 M addition of addition of	HCl? 50 ml of 0		14	
50.	Equal volumes of mo	olar hydrochlo e liberated res _l	ric acid and a	sulphuric a	، ادامه			ute N	JaOH solution ar	nd x kcal

A. x = y B. $x = \frac{y}{2}$ C. x = 2y D. none of the above

		-1 -17					
51,	Hybridisation of central aton				sp	D	dsp ²
	7 t. 5p	B. s	r		SP .		
52.	Of the following compounds	s the me	ost acidic is				and the same of th
	A. As_2O_3	B. F	P_2O_5	C.	Sb ₂ O ₃	D.	Bi ₂ O ₃
	The half-life of a radioactive		-4 is 10 hours. Ho	w much u	vill be left after 4 ho	ours in	1 g atom sample?
53.	- 22	eleme	nt is 10 hours. Ho	C	4 56 x 10 ²¹ atoms	D.	4.56×10^{20} atoms
5.4	For the Paschen series the v	alues o	fn, and n, in the e	xpression	$\Delta E = Rhc \int \frac{1}{1} \frac{1}{1}$	are:	
54.							
	A. $n_1 = 1$, $n_2 = 2, 3, 4$, C. $n_1 = 3$, $n_2 = 4, 5, 6$,			$\mathbf{B}_{t/}$	$n_1 = 2$, $n_2 = 3, 4$,	5,	
	C_1 $n_1 = 3$, $n_2 = 4, 5, 6$,		No.	D_{ϵ}	$n_1 = 4$, $n_2 = 5$, 6,	7	4
	Under which of the following						
55.			IIIIOIIS IS LIIC TCIALII	B R	Constant temperati	ле	
	A. Constant PressureC. Constant temperature	and nre	essure	D.	Constant temperati	are, pre	ssure and composition.
56	An organic compound made			20% nitro	gen. Its molecular	weight D.	18. 65
	A. 70	B.	140	С.	100	D.	05
57.	In Cu-ammonia complex, th	ne state	of hybridization of	of Cu ⁺² is			
57.	A. sp ³	B.		C.	sp^2f	D.	dsp ²
58.	The reaction that takes place	e when	Cl ₂ gas is passed	through c	onc. NaOH solution	D.	Disproportionation
	A. Oxidation	В.	Reduction	C.	Displacement	D.	Disproportionation
59.	"Electron" is an alloy of						
	A. Mg and Zn	B.	Fe and Mg	C.	Ni and Zn	D.	Al and Zn
			1 to a selection of the	a ma bu th	a action of:	in .	
60.	Blackened oilpainting can l	be resto	BaO ₂	orm by th	H ₂ O ₂	D.	MnO_2
	and a line						
61		one w	hich has the canal	bility to to	orm complex comp	ouna a	nd also possesses oxidizm
	and reducing properties is:						
	A. HNO ₃	B.	HNO ₂	C.	НСООН	D.	HCN
62.	Atoms in a P4 molecule of	white r	hosphorus are arr	anged reg	ularly in the follow	ing way	/:
02.	A. at the corners of a cu			T		octahe	dron
	C. at the corners of a tet				at the centre and o	corners	of a tetrahedron
63.				D			
	A. Silicon is extensively			r B. D.	Carborundum is S Mica contains the		nt silicon
	C. Silicon occurs in free	state I	и паше	D.	MICO COMMINS THE	OLUITO!	

In aluminium extraction by the Bayer process, alumina is extracted from bauxite by sodium hydroxide at high temperatures and pressures:

$$Al_2O_3(s) + 2OH^{-}(aq) \rightarrow 2Al_2O_2^{-}(aq) + H_2O(1)$$

Solid impurities such as Fe₂O₃ and SiO₂ are removed and then Al(OH)₄ is reprecipitated:

 $2 \text{ Al}(OH)_4^- \rightarrow \text{Al}_2O_3$. 3H_2O (s) + 2 OH (aq). In the industrial world:

Carbon dioxide is added to precipitate the alumina.

Temperature and pressure are dropped and the supersaturated solution seeded. B.

C. Both (A) and (B) are practised

D. The water is evaporated

The addition of HBr to 2-pentene gives:

2-bromopentane only

3-bromopentane only B.

2-bromopentane and 3-bromopentane

1-bromopentane and 3-bromopentane D.

AND THE RESERVE AND ADDRESS OF THE PROPERTY OF THE PARTY OF THE PARTY

Ethelene can be separated from acetylene by passing the mixture through:

fuming H₂SO₄ B. pyrogallol

C. ammoniacal Cu₂Cl₂ D. Charcoal powder

67. Reaction of R OH with R'MgX produces:

RH

B. R'H

C. R-R D. R'- R'

. CH₃

In the compound $HC \equiv C - C = CH_2$ the hybridization of C-2 and C-3 carbons are respectively: $B_s - sp^2 & sp^3$ C. $sp^2 & sp$ D. $sp^3 & sp$

sp³ & sp³

The two structures written below represent

pair of diastereomers B. pair of enantiomers C.

same molecule

D. both are optically inactive

70. Which of the following carbocations will be most stable?

A. Ph₃C⁺

B. CH₃- CH,

C. $(CH_3)_2 \overset{+}{C}H$ D. $CH_2 = CH - \overset{+}{C}H_2$

71 Which statement is incorrect?

A. Phenol is a weak acid.

Phenol is an aromatic compound B.

Phenol liberates CO2 from Na2CO3 soln. C.

D. Phenol is soluble in NaOH

72 In which of the following reactions new carbon-carbon bond is not formed:

Cannizaro reaction

B. Wurtz reaction

C.

Aldol condensation D. Friedel-Craft reaction

73.	A compound is formed by substitution of two chlorine for two hydrogens in propane. The number of possible isomeric compounds is
	A. 4 B. 3 C. 5 D. 2
74.	Which one of the following is called a carbylamine? A. R CN B. R CONH ₂ C. R CH = NH D. R NC
75.	For making distinction between 2-pentanone and 3-pentanone the reagent to be employed is A. K ₂ Cr ₂ O ₇ /H ₂ SO ₄ B. Zn-Hg/HCl C. SeO ₂ D. Iodine/NaOH
76.	Which one of the following formulae does not represent an organic compound? A. C ₄ H ₁₀ O ₄ B. C ₄ H ₈ O ₄ C. C ₄ H ₇ ClO ₄ D. C ₄ H ₅ O ₄
77.	The catalyst used for olefin polymerization is: A. Ziegler-Natta Catalyst B. Wilkinson Catalyst C. Raney nickel catalyst D. Merrifield resin
78.	The oxidant which is used as an antiseptic is: A. KBrO ₃ B. KMnO ₄ C. CrO ₃ D. KNO ₃
79.	Which of the following contributes to the double helical structure of DNA A. hydrogen bond B. covalent bond C. disulphide bond D. van-der Waal's force
80.	The monomer used to produce orlon is A. $CH_2 = CHF$ B. $CH_2 = C Cl_2$ C. $CH_2 = CH Cl$ D. $CH_2 = CH-CN$
	CHEMISTRY
	(Bengali Version)
	(Dengan Voxoron)
41.	প্রত্যেকের কম্পাঙ্ক 2500 S ⁻¹ এমন এক মোল ফোটনের মোট শক্তি আনুমানিকঃ
	A. 1 erg B. 1 Joule C. 1 eV D. 1 MeV
42.	
	A. n_t/t B. $\ln n_t/t$ C. $d \ln n_t/dt$ D. $t.n_t$
43.	একটি বিক্রিয়ায় বিক্রিয়ক R-র অর্ধায়ু $T_{1/2}$ কিভাবে তাহার প্রারম্ভিক গাঢ়ত্বের (a_0) সহিত পরিবর্তিত হয় তাহা দেখানো হইল
	T _{1/2}
	এই বিক্রিয়ার ক্রম হইবে ঃ
	A. 0 B. 1 C. 2 D. 3

44.	তাপ্র	গতিবিদ্যার দিতীয় সূত্র বলে যে কাজকে তাপে পরিণত করা	, কোন	চকীয় প্রক্রিয়ায়	Ι,					
	A.	কাজকে তাপে পরিণত করা	যায় না			B.	তাপকে কাজে পরিণত	করা যায়	-	
	C.	কাজকে সম্পূর্ণভাবে তাপে	পরিণত	করা যায় না		D.	তাপকে সম্পূর্ণভাবে কা	জে পরি	ণতি করা যায় না।	
45.		বিক্রিয়ার সাম্য ধ্রুবক K-কে (
		$K = e^{-\Delta G/RT}$				C.	$K = e^{-\Delta H/RT}$	D.	$K = e^{-\Delta H^0/RT}$	
46.	SO ₂	$+\frac{1}{2}O_2 = SO_3$ বিক্রিয়াটির	জন্য য	দি লেখা হয় K	$L_p = K_c (RT)$)*, তবে	x এর মান হবে ঃ			
	A_{E}	-1	В.	$-\frac{1}{2}$		C.	$\frac{1}{2}$	D.	1	
47 ₌	²³⁵ (J ক্ষয়ে শুধুমাত্র α-particle	এবং [3—particle (বর হয় ধরলে এ	ांडे ऋ रः	ার সম্ভাব্য বিক্রিয়াজাতটি ঃ		17	
	A,	225 89 Ac	B.	²²⁷ Ac		C.	²³⁰ Ac	D.	251 Ac	
48.	একটি	প্রথম কোঁটি (order) বিক্রয়া	N 10%	পূর্ণ বিক্রিয়া	হতে 20 mins	s. সময়	লাগে। তাহুলে 19% পর্ব	वेकिया :	হার্ড সময় লাগুরে ঃ	
	A.	40 mins.	B.	60 mins.		C.	30 mins.	D.	50 mins.	
49.	নীচের	কোনটি যোগ করলে 50 ml	0.01	M HCl ধ্রবং	ার pH হ্রাস থা	বে ?				
,	* 3.4	5 ml of 1M HCl 50 ml of 0.002 M HC				D.	50 ml of 0.01 M H Mg যোগ করলে	CI'		
50.	সম জ এবং y	ায়তন মোলার হাইড্রোক্লোরিক v kcal তাপ বিমৃক্ত হয়। নীচে	অ্যাসিং র কোন	ড এবং সালফি ট সত্য ?	উরিক অ্যাসিডা	কে পৃথ	ক পৃথক ভাবে লঘু NaOH	দ্রবণ ছ	ারা প্রশমিত করায় যথা	क्ट्र x kcal
		x = y	В.	$x = \frac{y}{2}$		C.	x = 2y	Ď.	এর কোনটিই নর	
51.	NF ₃ (যৌগের কেন্দ্রী য় পরমাণুর সংক	রায়ন (Hybridisati	on) হইবেঃ					
	A.					C.	sp ²	D,	dsp ²	
52.	নীচের	যৌগভালির মধ্যে কোনটি সব	চয়ে বে	শী অন্নধর্মী?						
	A.	As ₂ O ₃	B.	P_2O_5		C.	Sb ₂ O ₃	D.	Bi ₂ O ₅	
53.	একটি (তেজদ্রিয় মৌলিক পদার্থের অং	ព័ន្ធ 10	ঘন্টা। ঐ মৌৰি	ক পদার্থের 1৫	atom	। এব সাস্থ্য 4 সমী প্রান্ত করে	त्यांकि को	न्यात अधिका वाक्रिक	
	À.	45.6 x10 ²³	B.	4.56×10^{2}	3	C.	4.56×10^{21}	D.	મનાગુ તાલ્લા ચાયપલ? 4.56 x 10 ²⁰	
54.	নিম্নোড	জ সমীকরণে প্যান্তেন শ্রেণী র	জন্য n _i	এবং n ₂ এর ম	ৰ হবেঃ			- 7		
		Rhe $\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$								
	A,	$n_1 = 1$, $n_2 = 2, 3, 4,$	V2440444			В	$n_1 = 2$, $n_2 = 3$, 4, 5			
	C.	$n_1 = 3$, $n_2 = 4$, 5, 6,	novo.			D.	$n_1 = 4$, $n_2 = 5$, 6, 7		···	
5.		র্ন নীচের সমীকরণটি একটি বন্ধ	সিস্টে	মের জন্য গ্রহণ	ब्योगी ?					
		ΔE + P ΔV								
		স্থির চাপে				B.	স্থির তাপমাত্রায়		1000	
	U.	স্থির তাপমাত্রা ও স্থির চাপে				D	Was interested to the	M-2	-C	

56.	C. H 43	rং N ঘটিত একটি জৈব যৌ	গে 20	% নাইট্রোজেন আছে। যৌগ	টির আর্ণা	বৈক ওজন ঃ			
50.	A. 70)	B.	140	C.	100	D.	65	
57.	Cu- আ	মানিয়া জটিল মূলকে Cu [†]	² - এর	া সংকরায়ন (hybridizatio	m) অবং	য় হলোঃ		II III VA	
	A. sp		B.	•	C.	sp ² f	D.	dsp ²	
£0	-	কে গাঢ় NaOH দ্ৰবণে পা	গলে <i>ত</i>	য বিক্রিয়া ঘটে তা হলোঃ					
58.		রেণ	В.		C.	প্রতিস্থাপন	D.	অসমবিয়োজন	
						2			
59.	''ইলেকট্র	ন" যে দুইটি মৌল ধাতুর সং	কের তা D	হা হহণ ১	C.	Ni এবং Zn	D.	Al এবং Zn	
		lg এবং Zn			11				
60.		য়ে যাওয়া তৈলচিত্রের পূর্বাব		রুদ্ধার করে ঃ	C	H_2O_2	D.	MnO ₂	
		ক্লারিন	B.	BaO ₂					
61.	নীচের অ	্যাসিডগুলির মধ্যে যেটির জ	রণ ও	বিজারণ ধর্ম আছে এবং জটি	ল যৌগ গ	ঠিনের ক্ষমতা আছে সেটি হ	লোঃ	HCNI	
01.		·INO₃	B.		C.	НСООН	D.	HCN	
						0			
62	P_4 সাদা	ফসফরাস অণুর পরমাণুগুণি	নিম্নবি	নিখিত উপায়ে নিয়মিত সাজা	না আছে B	ু একটি অস্ট <mark>ুতলকের কোণ</mark>	গুলিতে		
	Α.	একটি ঘনকের কোণগুলিতে			D	একটি চতুস্তলকের কেন্দ্রে	ণ ও কে	ণগুলিতে	
		একটি চতুস্তলকের কোণগুর্নি							
		কোন বক্তব্যটি যথার্থ নয়?							
63.	ান্দ্রের (A.	কোন বস্তুর্ব্যাত ববাব বয় : অর্দ্ধপরিবাহী হিসেবে সিলিব	হন এর	বহুল ব্যবহার আছে	В.	কার্বোরান্ডাম হল SiC			
	C.	প্রকৃতিতে সিলিকন মুক্তাবস্থ	ায় থাতে	<u></u>	D.	অপ্ৰতে সিলিকন মৌল গ			
		ক্ষেত্ৰ ক্ষেত্ৰ	লোপ	ও চাপে সোডিয়াম হাইড্রকসা	ইড দ্বারা	অ্যালুমিনা নিষ্কাষণ করা হয়	9		
64	বায়ার গ	শ্বনাততে বন্ধাহত বেন্দে তথ	0 1 1	07(00) + H O (I)					
	Al_2O_3	$_3(s) + 2OH^-(aq) \rightarrow$	ZAI ₂	50 2 (aq) + H2O (1) গুলি বিদূরিত করে Al (OH)	্ প্রঃ ড	মংক্ষিপ্ত করা হ য় ঃ			i
	Fe ₂ O	$_3$ এবং SiO_2 র মত কচিন 3	স ও ।সং	वाल विम्तिक कर्म स्वर्गकार	4 4."	110			
	2 A1 ($OH)_4^- \rightarrow Al_2O_3 \cdot 3H_3$	O (s)	+ 20H (aq). শিল্প জগ	তে				
	A.	জ্ঞানহাত্রিয়া ভারগ্রাক্ষপথের ট	জন্য কা	বিন ডাই অক্সাহড থোগ কর।	ર્ય				
	B.	তাপমাত্রা ও চাপ কমিয়ে ও	মাতপৃত্	ফু দ্রবণটির বীজ কেলাসন কর ক্র	11 < 21				
ij.	C.	(A) এবং (B) দুইই করা	રય						
	D.								
6	5 ₀ 2-P€	ntene এর সাথে HBr যুব	ক্ত হ য়ে	দেয় ঃ	B	় কেবলমাত্র 3-ব্রোমোর	পন্টেন		
		কেবলমাত্র 2-ব্রোমোপের	টন লেকা	पर वर में न	D) 1- ব্রোমোপেন্টেন এব	ং 3-ব্ৰে	रिभार शिर्टिन	
	C.								
6	6 নিম্নে	র কোনটির মধ্যে দিয়ে পাঠি	য়ে ইথি	থিলিনকে অ্যাসিটিলিন থেকে	আলাদা ক	রা যায়? অ্যামোনিয়াক্যাল Cu	Cl ₂	D. চারকোল চূর্ণ	
	A.	ধৃমায়িত H₂SO₄	I	3. পাইরোগ্যালল	(J. Officational Co.		grant to the	
6	57. R C)H- এর সহিত R'MgX	এর বি	ক্রিয়ায় উৎপন্ন হয় ঃ		R-R	t,	D D' D'	
4	A.	RH		B. R'H	(C. R–R		D, K-K	

CH₃

68. $HC = C - C = CH_2$ যৌগে C-2 এবং C-3 কার্বন পরমাণুগুলির সঙ্করায়ন হল যথাক্রমে ঃ

sp³ এবং sp³

B. sp² এবং sp³ C. sp² এবং sp D. sp¹ এবং sp

69. নিম্নলিখিত সাংকেতিক গঠন দুটি ঃ

ভায়াস্টিরি**ওমারের জো**ড় A.

এনানসিওমারের জ্বোড় B.

একই অণু (same molecule)

উভয়ই আলোক নিষ্ক্রিয় (optically inactive) D_a

70. নীচের কার্বোক্যাটায়নগুলির কোনটি স্বচেয়ে বেশী সৃস্থির ইইবে?

Ph₃C⁺

B. $CH_3 - CH_2$ C. $(CH_3)_2CH$ D. $CH_2 = CH - CH_2$

71. কোন বক্তবাটি বেঠিক ?

ফেনল একটি দূর্বল অন্ন

B. কেনল একটি আরোমেটিক যৌগ

ফেনল Na_2CO_3 দ্রবণ থেকে CO_2 উৎপন্ন করে D. ফেনল NaOH এ দ্রবণীয়

72. নীচের কোন বিক্রিয়ায় নৃতন কার্বন-কার্বন বন্ধন তৈরী হয় না ঃ

A. ক্যানিজারো বিক্রিয়া

B. ভার্জ বিক্রিয়া

C. আলভল কনডেনসেসান D. ফ্রিডেল-ক্রাস্ট বিক্রিয়া

73. প্রোপেনের দুটি হাইড্রোজেন দুটি ক্লোরিন মারা প্রতিস্থাপিত করলে যতগুলি সম্ভাব্য সমাবয়ব হয় তার সংখ্যা :

B. 3

C. 5

D. 2

74. নিম্নের কোন্ট্রিকে কার্বিলঅ্যামিন বলা হয়ঃ

A. RCN

B. R CONH₂

C. R CH = NH

D. RNC

75. 2-pentanone কে 3-pentanone থেকে তফাৎ করার জন্য যে বিকারক কাজে লাগাতে হবে তা

A. K₂Cr₂O₇/H₂SO₄

B. Zn-Hg/HCl

SeO₂

D. আয়োডিন/NaOH

76. নীচের কোন সংকেতটি একটি জৈব যৌগের পরিচায়ক নয়?

A. $C_4H_{10}O_4$

B. C₄H₈O₄

C. C₄H₇ClO₄ D. C₄H₉O₄

অলিফিন পলিমারহিজেসনের জন্য ব্যবহাত অনুঘটক হলো :

A. জিগুলার-নাট্র অনুষ্টক B. ডইল্কিনসন্ অনুষ্টক

C. ব্যানে nickel অনুষ্টক D. মেরিফিন্ড রেসিন

78. যে জারক দ্রব্যটি অ্যান্টিসেপটিক হিসেবে ব্যবহার করা হয় সেটি হল :

A. KBrO₂

B. KMnO₄

C. CrO₃

D. KNO₃

79. নীচের কোনটি DNA-এর দুই প্যাচান গঠনের কারক?

A. হাইড্রোজেন বন্ধন

B. সমযোজি বন্ধন

C. ডাইসালফহিড বন্ধন D. ড্যান-ডার ওয়াল-এর বলা

80. Orlon তৈরীতে যে monomer ব্যবহার হয় তা হল ঃ

A. $CH_2 = CHF$

B. $CH_2 = C Cl_2$

C. $CH_2 = CH CI$ D. $CH_2 = CH - CN$